Correlating Tropospheric Column Ozone with Tropopause Folds: the Aura-OMI Satellite Data Do we see tropopause folds in the Aura data? Are the STE O₃ fluxes proportional to trop column anomalies? Qi Tang and Michael J. Prather University of California, Irvine Dept. of Earth System Science Thanks to the Aura ozone team # Methodology - High resolution chemistry transport modeling (CTM) (1°×1°×40-layer×0.5-hour) - Comparing with OMI level 2 ozone profile data - Identifying tropopause folds and stratosphere-troposphere exchange (STE) from satellite data (as trop column anomalies) # Model setup ## **UCI CTM** | Wind fields | ECMWF IFS in collaboration with U. Oslo | |---------------------------|---| | Horizontal Res | 1°×1° interpolated from T159 fields | | Vertical Res | 40-layer, surface – 2 hPa, ∼1 km near TPP | | Time step | 0.5 hour (3-hr averages for met-fields) | | Trop Chem | ASAD (Carver et al., 1997) | | Strat Chem | Linoz version 2 (Hsu and Prather, 2009) | | Emission | EU QUANTIFY Y-2000 (Hoor et al., 2009) | | Lightning NO _x | 5.0 Tg N yr ⁻¹ | #### Aura ozone measurements In ozone sonde data (and our model!), most folds occur between 150–300 hPa and are a little more than 1 km thick (about 50 hPa). | Instruments | Pressure (hPa) | |-------------|--| | MLS | 215, 147, 100 | | HIRDLS | 261–100 (11L) | | TES | O ₃ Columns (5 km×8 km) | | OMI | O ₃ Columns (2600 km×13 km) | | | | #### Aura ozone measurements In ozone sonde data (and our model!), most folds occur between 150–300 hPa and are a little more than 1 km thick (about 50 hPa). | Instruments | Pressure (hPa) | |-------------|--| | MLS | 215, 147, 100 | | HIRDLS | 261–100 (11L) | | TES | O ₃ Columns (5 km×8 km) | | OMI | O ₃ Columns (2600 km×13 km) | | OMI L2 ozone profile (OMO3PR V003) | | | |------------------------------------|-----------------------------|--| | Time | Oct 1, 2004 – present | | | Horizontal | 13 km×48 km (profiles) | | | | 13 km×24 km (columns) | | | Vertical | 18-layer, surface – 0.3 hPa | | #### CTM vs. Sonde Searching for TFs: 35°S – 40°N (where most folds occur), 20 WOUDC stations, 638 exact matches in year 2005. #### CTM vs. Sonde - (a) 25% Hong Kong, China (22.31° N, 114.17° E, STN 344), Sep. 7, 2005. - **(b)** 25% Ankara, Turkey (39.97° N, 32.86° E, STN 348), Aug. 17, 2005. - (c) 30% Huntsville AL, USA (34.72° N, 86.64° W, STN 418), Dec. 3, 2005. - (d) 20% Huntsville for Mar. 5, 2005. # Swath-by-swath comparisons #### Deriving tropospheric column O₃ (TCO) - Tropopause (TPP) is the upper boundary of the uppermost CTM layer identified as tropospheric by its mean e90-tracer abundance. - OMI TCO is calculated from the OMI O₃ profile with CTM TPP. ## Swath-by-swath comparisons: total column Swath-by-swath comparison of total column O_3 (unit: DU) from OMI (top) and CTM (bottom) for June 10, 2005 (left) and December 3, 2005 (right) (25-hr periods beginning 00 UTC). # Swath-by-swath comparisons: tropospheric column Swath-by-swath comparison of tropospheric column O_3 (unit: DU) from OMI (top) and CTM (bottom) for June 10, 2005 (left) and December 3, 2005 (right) (25-hr periods beginning 00 UTC). # Detecting tropopause folds (TF) in the CTM ## Objective criteria for TF (2M per month) - Above 5 km - Once the O₃ exceeds 80 ppb - Within 3 km above, decreases by 20 ppb or more to a value below 120 ppb ### TF location relative to TCO for Jun. and Dec., 2005 for Jun. 10 (left) and Dec. 3 (right), 2005 (25-hr periods beginning 00 UTC). 09/28/2010 For most of the daylit globe (56 % in June and 65 % in December), the differences are within $\pm 5\,\text{DU}.$ #### CTM vs. OMI probability distributions for Jun. and Dec., 2005 Two million comparisons per month. The highest densities lie along the 1:1 line (black bold line) and errors are generally symmetric, showing little overall bias. Units are 0.001 per DU^2 . Data filtered to aviod intermediate tropopause (102-181 hPa (13%)) Data filtered to aviod intermediate tropopause (100-185 hPa (13%)) #### Does the CTM simulate the hourly variance in the OMI? Simulated Variance: $$SV = 1 - \frac{\overline{(CTM' - OMI')^2}}{\sigma_{CTM}^2 + \sigma_{OMI}^2}$$ (1) where $CTM' = CTM - \overline{CTM}$ and $OMI' = OMI - \overline{OMI}$. - SV measures the fraction of variance that is accurately simulated. - SV ranges from negative (when CTM' and OMI' are anti-correlated) to +1 (when CTM' and OMI' are identical). - The mean SV are 0.29 (tropics) and 0.34 (extra-) for June, and 0.21 (tropics) and 0.39 (extra-) for December. ## CTM matches OMI (SV \geq 0.70) for Jun. and Dec., 2005 On top of the CTM TCO (color), areas with SV \geq 0.70 are marked by black dots. Because of the tropopause filter, TCO variance is not affected by the tropopause motion. #### Cumulative distributions of SV for Jun. and Dec., 2005 Independent of seasons, the SV is best in SH mid-latitudes, moderate in NH mid-latitudes, and worst in the tropics. Overall, SV \geq 0.50 for about 35 % of the mid-latitudes. ### TF and STE O₃ Flux in CTM for Jun. and Dec., 2005 Over the summer, approximately 5% of continental convection in the CTM reaches O_3 levels above $120\,\mathrm{ppb}$. 77<u>1-1</u>77 #### Conclusions - Comparing the CTM profiles with ozone sondes reveals that the model matches sonde measurements and is capable of locating and resolving tropopause fold events. - In the CTM, large daily variance in TCO are correlated with TF events and occur most frequently near the subtropical jet streams. - The modeled ozone columns show very good agreement with coincident high frequency OMI observations, both in terms of the monthly mean and variability. Results are generally better in extra-tropics than in tropics. - The STE flux in the vicinity of the subtropical jets can possibly be measured with TCO anomalies.